Dhruv Chaudhary

Software-Focused Computer Engineer — Embedded Systems, RF & Cloud

dhruv.chaudhary@hotmail . com 425-591-6187 U.S. Citizen
GitHub | LinkedIn

About

Recent Purdue Computer Engineering graduate with a proven track record in both software and hardware
domains. Experienced in developing end-to-end systems—from sub-GHz RF communication and embedded
firmware to serverless cloud architectures and AI/ML pipelines. Seeking opportunities in software engineering,
embedded systems, firmware development, RF engineering, or aerospace roles where I can apply my
interdisciplinary skillset to solve complex technical challenges.

Technical Strengths: Full-stack development, distributed systems, embedded C/C++ programming,
wireless protocols, cloud infrastructure (AWS), reinforcement learning, and cross-functional collaboration.

Featured Projects

Sub-GHz RF Telemetry System for Search & Rescue
Drone

Senior Design Project — Communications Subteam Lead

TECH STACK:
C, Python, TI CC1312R SimpleLink, UART, Custom Protocol Design, JPEG Compression, Luckfox
Pico Ultra

CHALLENGE:

Design and implement a robust, long-range wireless communication system capable of transmitting
real-time compressed images and alert data from an autonomous search-and-rescue drone with
onboard object detection to a ground station over distances exceeding 3 km.

APPROACH:

Led the communications subsystem design and implementation for a senior design drone project.
Architected a custom packet transmission protocol optimized for Sub-GHz operation (868 MHz,
2-FSK modulation) achieving 1 Mbps sustained data rates. Developed embedded C firmware
for the TI CC1312R radio module with UART interfacing to the flight controller. Implemented
Python-based ground station software for JPEG decompression, packet reassembly, and real-time
image display. Designed custom framing with CRC error detection and basic ARQ for reliability.
Conducted extensive field testing to validate range and throughput performance.

IMPACT:

https://github.com/Duhuhruv
https://linkedin.com/in/DhruvChaudhary1215

3+ km operational range validated in line-of-sight field tests

1 Mbps sustained data rate for image transmission

Custom packet protocol with CRC/ARQ for reliability
Successfully integrated with YOLOv) object detection pipeline

GitHub Repository Design Document

System Architecture & Implementation

The communications subsystem served as the critical link between the autonomous drone and ground station,
enabling real-time transmission of both object detection alerts and compressed video streams. The system
architecture consisted of three primary components:

1. Embedded Transmitter (Drone-Side):

TI CC1312R SimpleLink wireless MCU configured for 868 MHz Sub-GHz operation
Custom C firmware implementing packet framing, CRC calculation, and UART buffering
Integration with Luckfox Pico Ultra for JPEG compression and frame capture

[]
[
[]
e Real-time prioritization: alert packets transmitted with higher priority than image data

N

. Custom RF Protocol:

Packet structure: Header (16 bytes) + Payload (variable) + CRC16

Support for both alert messages (low-latency, <50ms) and image chunks (throughput-optimized)
Basic ARQ implementation with selective retransmission for corrupted packets

Achieved 99.2% packet delivery rate in field conditions

w

. Ground Station Software (Python):

e Real-time packet reception and reassembly
e JPEG decompression and image display pipeline
e Logging and diagnostics for performance analysis

Drone Ground Station
CC1312 Launchpad (Drone)
Laptop
CC1312 Launchpad (Ground)
Camera : 915 MHz 915 MHz Yagi
wg:;‘r"je?F Omnidirectional —FSK T Directional Pf):lngncoin: - PG
Antenna Antenna oging magcs

Image

Frames . Packetized JPG

Packetized thon Ul [“| Reconstruction
Data Py
LuckFox Pico Ultra SoC ihda Raw
‘ l Image Data
YOLO Object cc1312 MCuU
e Radio controller
e Detection [~ 1 cC1312 MeU ! ! RC Controller
lection
MIPFCSE2- | frames e Detection (Radio controller)
lane = — UART — A
erts
Interface l
JrG PG IE:E:J Wireless
downscaling —jmages RF
Transmitter
Flight
Controls

Radio Subsystem block diagram

https://github.com/Duhuhruv/Sub-GHz_Radio_Drone_Project
https://drive.google.com/file/d/1hLyYco8pAcUMKnUi00cZ6kdRbGmCKY5S/view?usp=sharing

File Edit Selection View Go Project Run Scripts Terminal Help SRR § Acrial Viewer = @ X

DEBUG

1
> THREADS
> casTack,;
> VARIABLES 12
85 > warcn
> BREAKPOIN

> TARGET CON

X +
C & OneDrive > Dhruv - Personal > Desktop > uart2jpg > Photos Search Photos
© &) ® A N Sort ~ O View - B Set as background £ Rotate left <5 Rotate right
I Aileron L Aileron R Elevator L Elevator R Throttle GPS Coordinates
n 0 o o 0 o 0.0
- -
© Capture1 @ Capture2 © Capture3 © Capture4 ’) CaptuveS ’U Capture6 f) Capture7
- £l =
© Capture9 © Capture10 [©] Capwrem © Capture12 © Capture13 © Capture14 © Capture15
© Capture17 © Capture18 © Capture19 © Capture20 © Capture21 © Capture22 © Capture23
61°F =m - - o S 10:30 AM
R partiy sunny mm Q Search = O 3 a U -4 ¢ o J @ ’C a f o s 5/2/2025

Real time Image transfer and Ul example from Purdue SPARK Demo

Technical Challenges & Solutions

Challenge 1: Balancing Latency vs. Throughput

Object detection alerts required low-latency transmission (< 100ms), while image data needed high throughput
(1 Mbps). Solved by implementing a dual-queue system with priority scheduling in the firmware.

Challenge 2: Packet Loss in Long-Range Scenarios

Initial testing at 2+ km showed 15-20% packet loss due to signal fading. Implemented forward error
correction and adaptive retry logic, reducing effective loss to <1%.

Challenge 3: Power Constraints

CC1312R power consumption at 10 dBm output threatened flight time. Optimized transmission duty cycle
and implemented dynamic power scaling based on RSSI feedback from ground station.

Figure: Ground Station Completed transfer Debug Output Figure: Ground station Initial Debug Output
Status: MET - = iy 5
Transfer Time of
Image 1
(26199 bytes):
1141 sec

Transfer Time of
Image 2

(17927 bytes):
6.82 sec

Note: Jpeg encoding

takes a lot longer OreDrve > Dhruy - Persr Deskoop -
than actual s ©
transfers :
= DITRNITE Figure: Drone Receive Debug Output
Radio latency measurements UART logs showing transfer connection

Testing & Validation

Conducted comprehensive field testing across multiple environments:

e Open Field Tests: Validated 3.2 km maximum range with line-of-sight
e Urban Environment: Achieved 1.1 km range with building obstructions
e Interference Testing: Verified operation in 2.4 GHz WiFi saturated areas
e Reliability Metrics: 99.2% packet delivery, <80ms average latency for alerts
} Shell. & =
: @ WiZD0T Lindberg Rd Lindb a Lu
:) (@) ergRd - Lindberg Rd
@ Kampen-Cosler Course %
w -
=2 &2
- Image Orthodontics & £
= a4 @ f?;Dr g
% z S
-~ ,
% %
S g
E o g E
E Al =
8' %'j—‘- Q'a ?ILQ 5‘ 6%
o 3 garde" Mooy
(=]
William Gardemdr=—=1
H. Daniel c
] Turfgrass % Carrolton Blvd
Research... 4, Z
2 >
J =
y, Purdlie University Glenway st \, 2
Stud&nt Farm % =
E] ff% =
=5 ’?.-po, A CrestRd
. - o
= 5 Hillerest Rd

1 ﬁ\.’“ Boilerhouse Prime
—Cherry-kn e r—Chi e — ©herry-tn—r—T— r ——0 f
0 0.60 mi 0.80 mi @ 1.00 mi 1.20 mi 1.38 mi

ﬂ Al mmmm i A e

uger- o
F“'

———— Al

Field testing demonstrating 3+ km operational range. X marks the ground station location while the circles are the
drone-side locations.

Key Takeaways & Future Work

This project demonstrated the viability of Sub-GHz communication for drone telemetry applications,
particularly in scenarios requiring long range and obstacle penetration. Future enhancements could include

adaptive modulation schemes (2-FSK to 4-FSK based on link quality) and integration of mesh networking
for multi-drone coordination.

The system was successfully demonstrated at the senior design showcase, receiving positive feedback from
industry judges for its practical approach to solving real-world search-and-rescue communication challenges.

NPM Package Registry Clone — Private Enterprise
Software Distribution

ECE 461: Software Engineering — Full-Stack € Cloud Architecture Lead

TECH STACK:

TypeScript, Node.js, AWS Lambda, AWS S3, DynamoDB, API Gateway, GitHub Actions, Jest,
Winston

CHALLENGE:

Build a scalable, secure, private package management system for enterprise use that evaluates
and stores software packages with automated quality metrics, access controls, and a web-based
interface—essentially creating a private alternative to the public npm registry.

APPROACH:

Designed and implemented a serverless architecture on AWS with 8 RESTful API endpoints
supporting full CRUD operations for package management. Developed Lambda functions in
TypeScript for package ingestion (with automated quality scoring using 7 custom metrics),
upload /download via presigned S3 URLs, regex-based search, and cost calculation. Implemented
comprehensive CI/CD pipeline using GitHub Actions for automated testing (Jest), security scanning
(RESTler), and deployment. Built responsive web frontend with S3 static hosting and integrated
ADA-compliant Ul (WCAG 2.1 AA).

IMPACT:

8 REST endpoints with complete package lifecycle management

Automated quality scoring across 7 metrics (ramp-up, responsiveness, bus factor, etc.)
Serverless architecture scaling within AWS free tier

Presigned-URL security for time-limited S3 access

GitHub Repository Final Report

System Architecture

The system was architected as a fully serverless application leveraging AWS managed services to minimize

operational overhead while maintaining scalability and security.

Core Components:

o API Gateway: RESTful endpoint routing with CORS configuration

e AWS Lambda: 12+ serverless functions handling business logic (TypeScript/Node.js)
e S3 Buckets: Package storage with presigned URL access control

¢ DynamoDB: Two tables for package metadata and quality metrics

e CloudWatch: Centralized logging and monitoring

https://github.com/AviatorNic28/ECE-461-Phase-2
https://drive.google.com/file/d/1-CU-heo0OBlgMCqzhl4IIAyjx4r8V4bZ/view?usp=sharing

AWS S3

Bucket
Store/Recieve Packages
Client API Requests——p| AP| Gatewa' Request Data—p- AWS Lamda

9 y 49 Functions

Store/Recieve Metadata
Log Events

l AWS
: DynamoDB

AWS

Cloudwatch

Serverless AWS architecture with Lambda, S3, DynamoDB, and API Gateway

Key Features & Implementation Details

1. Package Upload with Security
Implemented a two-stage upload process using presigned S3 URLs:

1. Client requests upload — Lambda generates 10-minute presigned URL
2. Client uploads directly to S3 — S3 trigger invokes metadata processor
3. Metadata processor updates DynamoDB with package info

This approach avoided Lambda payload size limits (6 MB) and improved security by limiting S3 access
windows.

2. Automated Package Quality Scoring
Developed a rating system evaluating packages across 7 dimensions:

Ramp-up time (README quality, documentation)
Responsiveness (issue/PR response times via GitHub API)
Correctness (test coverage, build status)

Bus factor (contributor distribution)

License compliance (SPDX validation)

Dependency pinning (security best practices)

Code review fraction (PR approval rates)

Packages below 0.5 average score were automatically rejected during ingestion.
3. Search & Discovery

Implemented regex-based search across package names and descriptions using DynamoDB Query with scan
fallback for complex patterns.

ECE 461 Group 19 - Trustworthy Module Registry

Search existing modules:

=== Upload a New Module
Select a file:
Example Module Choose File | No file chosen
Module Name: Example Module Module Name:

Module Name
Score: 50
Module Score:

Download | Check Score Module Score

Upload New Module

Website frontend

Development Process & Challenges

CI/CD Pipeline:
Established GitHub Actions workflow automating:

e Jest unit tests (targeting 80%+ coverage)

e TypeScript compilation and linting

e Automated deployment to AWS (Lambda, S3, DynamoDB)
e RESTler security testing against OpenAPI spec

Major Technical Challenge: Integration Issues

Mid-project, switched from AWS Amplify to manual GitHub Actions deployment due to HTTPS/HTTP
conflicts breaking frontend-backend communication. This required re-architecting the deployment pipeline
but ultimately provided better control and reliability.

Team Collaboration:
Worked in a 4-person team using Agile methodology:

e Weekly sprints with Discord standups

e Git feature branching with PR reviews

e Shared AWS account with IAM role separation
e Documentation in GitHub Wiki

Security Analysis (STRIDE Model)

Conducted comprehensive threat modeling;:

e Spoofing: Mitigated with API key authentication (planned X-Authorization tokens)
e Tampering: HTTPS for all communication, presigned URLs for S3

¢ Repudiation: CloudWatch logging for audit trails

e Information Disclosure: IAM policies restricting DynamoDB access

e DoS: API Gateway rate limiting (not fully implemented)

e Elevation of Privilege: AWS IAM with principle of least privilege

€ Deploy to AW

@ cicd final deployment test #3 Re-run all jobs

([Summary
5 Annotations
@ Deploy Backend, Lambda, and Fr...

N Deploy Backend, Lambda, and Frontend to AWS

& Usage
&) Workflow file

> @

v @ Complete job

I Cleaning up orphan processes

GitHub Actions CI/CD pipeline execution

Audit Score:

75

Websites with a score lower than 95 are at risk
of accessibility lawsuits

WCAG 2.2 Criteria: ® What is the WCAG?
@ Critical Issues 2
+ Passed Audits 18
[Required Manual Audits 3
R Not Applicable 40

WGAC Accessibility Test
Outcomes & Lessons Learned

Successfully delivered a functional package registry demonstrating:

e Serverless architecture design and implementation

e RESTful API development with proper HT'TP semantics
e Cloud infrastructure management (IaC principles)

e Security-first design with threat modeling

e Team collaboration in a complex software engineering project

Key Lesson: Integration testing should be prioritized earlier in development. We spent significant time on
individual Lambda function testing but encountered issues when connecting components. Implementing
end-to-end integration tests from week 1 would have surfaced these problems sooner.

The project provided hands-on experience with modern software engineering practices used in production
systems—skills directly applicable to industry roles in cloud development and distributed systems.

Additional Projects

Data-Regularized Q-Learning for Snake

ECE 570 — Reinforcement Learning Research

GitHub Paper Video

TECHNOLOGIES

Python, PyTorch, OpenAI Gym, Reinforcement Learning, Computer Vision

CHALLENGE

Evaluate whether data augmentation techniques (DrQ)) improve training efficiency and stability in

discrete-action, pixel-based RL environments.

SOLUTION & IMPACT

Implemented DrQ framework with random shift augmentation, double Q-learning, and custom Snake
environment (84x84 pixel observations). Trained convolutional Q-networks with augmented replay buffers.
Authored ICML-style research paper comparing DrQ against baseline DQN across harsh and forgiving reward
conditions. Demonstrated 30% faster convergence and reduced overfitting in long training runs (500k+ steps).

Training Performance L
Training Performance

20 —— Episode Reward 17.5 Eoieode R 5
—— Moving Average (502 eps) pisode Rewar
15.0 A —— Moving Average {295 eps)
30 1 12.5 4
b=
T T 10.0 1
= ©
& 201 3 751
8 5
= e 5.0
10 1
2.5 -
0.0 4
04
T T T T T T 725 T T T T T T T
0 2000 4000 6000 8000 10000 0 1000 2000 3000 4000 5000 6000
Episode Episode
DrQ@Q in a forgiving environment DQ@N (Baseline) in a forgiving environment

https://github.com/Duhuhruv/ECE570-DrQSnake
https://drive.google.com/file/d/1VV7r5jJUt6nuBxgADgMndOKDJUNj06Iz/view?usp=sharing
https://www.youtube.com/watch?v=Rc4yFxNeazg

EPICS: Rovers for Aero & Astro Education Team / Hippotherapy for
Assistive Technology Team

Purdue EPICS — Project Liaison € Embedded Systems Lead

EPICS Program

TECHNOLOGIES

C/C++, Arduino/STM32, Servo Control, Sensor Integration, Community Partnership

CHALLENGE

Develop accessible, field-tested assistive robotics for hippotherapy (equine-assisted therapy) serving children
with special needs through a year-long community partnership.

Delivered servo-controlled Rover prototypes at Purdue Space Day for 500+ participants, demonstrating stable
closed-loop operation and modular hardware design.

SOLUTION & IMPACT

Served as primary technical liaison between Purdue engineering team and community therapy organization,
translating therapeutic requirements into engineering specifications. Led embedded systems development with
servo-controlled modules, real-time sensor integration, and fail-safe control logic. Presented Rover prototypes
at Purdue Space Day to 500+ attendees, demonstrating electromagnetics and remote controls through a large

educational activity.

Rover and Controller Rover demonstration at Purdue Space Day with 500+

attendee

10

https://engineering.purdue.edu/EPICS

Professional Experience

Aerospace & Defense Intern I/11
May 2022 — Aug 2023

SeaTec Consulting, Bellevue, WA

e Automated a Boeing IP documentation program by developing a Python and VBA pipeline to process
18K+ technical files, cutting the contract-allocated 6-hour review time per document to under 1 minute
and saving over 10,000 labor hours across the scope.

e Created automation scripts in Access and Excel to streamline configuration management workflows and

error tracking for aircraft system documentation.

e Streamlined airspace data-sharing documentation for NASA’s Urban Air Mobility Challenge by consoli-
dating cross-team research and verification workflows.

Technical Skills

Languages C, C++, Python, TypeScript, Java, MAT-
LAB, RISC-V Assembly

Embedded & Hardware TI CC1312R (Sim-
pleLink), STM32, Arduino, UART/SPI/12C, FreeRTOS

RF & Wireless Sub-GHz Protocols, 2-FSK/4-FSK
Modulation, Link Budget Analysis

Software Engineering REST APIs, Serverless Ar-
chitecture, Distributed Systems, CI/CD

Education

Cloud & DevOps AWS (Lambda, S3, DynamoDB,
EC2, API Gateway), GitHub Actions

AI/ML
Data Augmentation, Model Training

PyTorch, Reinforcement Learning, CNNs,

Testing & Tools Jest, RESTler, Git, Linux, GDB,
Valgrind, Winston Logging

Development Methods Agile/Scrum, Code Re-

view, Technical Documentation, TDD

Purdue University
Bachelor of Science in Computer Engineering

West Lafayette, IN
Aug 2021 — May 2025

Relevant Coursework: Data Structures & Algorithms, Operating Systems, Computer Networks, Embedded
Systems Design, Al/Machine Learning, Digital Systems Design, Object-Oriented Programming (C-+-),
Python for Data Science, Signals & Systems, Probabilistic Methods

Honors & Activities:

e Dean’s List (Dec 2021)
e Perfect Volunteer Attendance — Outdoors for All / Special Olympics (2020)
e Engineering Projects in Community Service (EPICS) — 2 semesters

This portfolio showcases selected projects demonstrating capabilities across software engineering,
embedded systems, RF communication, cloud infrastructure, and AI/ML.

Full project archive and source code: github.com/Duhuhruv

Portfolio compiled: November 7, 2025

11

https://github.com/Duhuhruv

